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Abstract: The additive functional equation is the best-

known functional equation. The stability question is: At 

which time that the solutions of the functional inequality 

are near to that of the strict functional equation? In the 

paper, we generalize the stability of the approximately 

additive mapping in a restricted domain. It is provided 

that the mapping which meets the additive equation 

approximately in a restricted domain is stable in entire 

space. 
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1. Introduction 

In Ref. [1], Ulam put forward the fundamental problem 

with regard to the stability of homomorphisms. In 1941, 

the first significant result concerning this subject was 

gave by Hyers [2] which established the stability of the 

additive mapping. After that, functional equations 

stability is generalized and developed by an increasing 

number of mathematicians in various directions (see [3-

14]). In particular, Rassias presented a drastic 

generalization of Hyers’s theorem and provided a 

generalized solving method for Ulam’s problem [3]. 

So far, the stability of functional equations defined on 

entire space was studied. The enquiry about the stability 

of the additive mapping in a restricted domain is natural. 

Exactly speaking, whether a strict additive mapping close 

to a mapping satisfying the additive inequality in a 

restricted domain. 

Skof gave a result that was a good answer to the above 

question [4]. Hyers confirmed a generalized stability 

theorem of the additive mapping in a restricted domain 

and employed it to the asymptotic derivability which 

plays a significant role in nonlinear analysis [5]. 

In the note, we prove some theorems on stability of 

approximate additive mapping, which generalize Skof’s 

theorem. 

2. Main Results 

Theorem 1. Let E1 be a real normed vector space, E2 be 

a real Banach space. Given numbers 0 , 0m , 2r , 

Nr and p with 10  p . If 21: EEf  satisfies  
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Thus for any integer n , we arrive at (4). Because 
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then   is an extension of g to 1E . 
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3. Conclusion 

This paper mainly discuss the stability of functional 

equations. We generalize the stability of the 

approximately additive mapping in a restricted domain. 

And we prove that the mapping which meets the additive 

equation approximately in a restricted domain is stable in 

entire space. These results generalize Skof’s theorem.  
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